Taxonomia para agentes inteligentes

Embora seja facilmente associada aos avanços tecnológicos deste século, a inteligência artificial (IA) teve sua origem ainda em meados do século XX e desempenhou um importante papel na constituição das ciências cognitivas [1]. Foi apenas no começo do século atual, porém, que termos como redes neurais e machine learning se tornaram populares, atingindo o seu apogeu com o advento das arquiteturas de deep learning e a adoção das mesmas por importantes players do mercado de tecnologia.

Há de se observar, no entanto, que desde sua origem até o estado da arte atual, diferentes conceituações e expectativas determinaram o que se pensou (e esperou) da IA em cada época. Podemos atribuir ao pesquisador norte-americano James Bezdek, no início dos anos 90, a distinção entre as inteligências biológica e artificial. Esta última, até então, possuía uma polêmica segmentação entre IA Forte e Fraca.

Bezdek estabeleceu em [2] uma relação onde redes neurais (NN) estão contidas no processamento de padrões (PR) e que por sua vez estão contidas na inteligência (I), em ordem crescente de complexidade, tal como demonstrado no diagrama abaixo. Além disso, Bezdek também categorizou a inteligência de acordo com os elementos que as compunham: a inteligência computacional (IC) se daria por operações matemáticas em máquinas criadas pelo homem; a inteligência artificial (IA) seria caracterizada por elementos simbólicos, não biológicos, e criada pelo homem; e a inteligência biológica (IB) se daria em elementos orgânicos. Por fim, Bezdek estabelecera uma relação de pertinência entre as inteligências, onde a IC estaria contida na IA, que por sua vez estaria contida na IB.

Se avaliarmos hoje a disposição dos subconjuntos no diagrama acima, talvez a pertinência da IA em IB exista apenas quando observada a complexidade de cada categoria, sem levar em conta as questões funcionais e/ou ontológicas. Em relação à IC estar contida na IA, o próprio Bezdek reafirmou, quase 25 anos mais tarde, que ainda acredita nesta configuração, muito embora tenha também afirmado que as duas áreas de pesquisa têm tido as fronteiras entre si diminuídas [3].

Seja qual for a categoria de inteligência a ser considerada, pressupõe-se em todas elas a existência de um agente com ela dotado: um agente inteligente. Do ponto de vista etimológico, o termo agente refere-se a que ou quem atua ou age em um dado contexto. Sob uma mesma perspectiva, inteligência é associada à faculdade de conhecer, compreender e aprender; ou ainda ao modo de se interpretar e atribuir juízo [4]. Não obstante ambos os termos sejam tacitamente compreensíveis, diferentes definições são encontradas nas mais variadas disciplinas e abordagens. Em minha pesquisa, e inspirado nas definições trazidas por [2], simplifico esta distinção em três categorias principais:

  • Agentes Inteligentes Artificiais (AIA): são todos os agentes autônomos, inteligentes ou adaptativos, cujos princípios e mecanismos que os constituam estejam inseridos no contexto da IC, da IA, ou ainda da robótica. Em outras palavras, esta categoria compreende quaisquer agentes inteligentes que não sejam biológicos.
  • Agentes Inteligentes Humanos (AIH): uma vez que humanos são capazes de perceber o ambiente no qual estão inseridos; representar a informação percebida; e então atuar no próprio ambiente, podem, da mesma forma, ser compreendidos como agentes inteligentes.
  • Agentes Inteligentes Biológicos (AIB): muito embora seres humanos possam ser inseridos nesta categoria, cabe distinguí-los dos demais agentes biológicos dada a distinção de seu córtex cerebral e de seus decorrentes processos mentais. Deste modo, entende-se por AIB todos os agentes de origem biológica que sejam autônomos, inteligentes e ou adaptativos, à exceção dos humanos.
  • Mesmo que esta categorização pareça trivial em um primeiro momento, ela traz ao menos duas consequências diretas à nossa concepção de agentes: (i) estabelece similitudes entre eles, afinal todos são agentes que percebem a informação; representam-na e então agem; e, por outro lado, (ii) estabelece diferenças entre eles, desobrigando assim a necessidade de igualdade a todo momento, isto é, talvez AIA e AIH jamais consigam executar as mesmas tarefas. Tem-se, assim, justificativas tanto para o estudo conjunto entre a inteligência artificial e as neurociências, quanto para a manutenção dos modelos e técnicas pertinentes a cada caso.


    Referências

    [1] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. 2010.
    [2] J. C. Bezdek, “On the relationship between neural networks, pattern recognition and intelligence,” Int. J. Approx. Reason., vol. 6, no. 2, pp. 85–107, 1992.
    [3] J. C. Bezdek, “(Computational) Intelligence,” IEEE System, Man, Cybernetics Magazine, vol. 2, no. 2, pp. 4–14, 2016.
    [4] Google, “Google Dictionary,” 2018. [Online]. Available: http://www.google.com.br. [Accessed: 10-May-2018].


    Cite esta página:
    T.B.N. Silveira. “Taxonomia para agentes inteligentes”. Em “Mente, Corpo & Bytes_”. 2019. Disponível em <https://tbnsilveira.info/2019/01/10/taxonomia-para-agentes-inteligentes/>.  Acesso em [data consulta].



    Categorias:IA clássica, Inteligência computacional, Ontologia

    Tags:, ,

    Deixe um comentário

    Preencha os seus dados abaixo ou clique em um ícone para log in:

    Logotipo do WordPress.com

    Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

    Foto do Google+

    Você está comentando utilizando sua conta Google+. Sair /  Alterar )

    Imagem do Twitter

    Você está comentando utilizando sua conta Twitter. Sair /  Alterar )

    Foto do Facebook

    Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

    Conectando a %s

    %d blogueiros gostam disto: